In this challenge, you will implement a function to calculate the factorial of a given non-negative integer. The factorial of a number n
(denoted as n!
) is the product of all positive integers less than or equal to n
. For example, the factorial of 5 is 5! = 5 * 4 * 3 * 2 * 1 = 120
.
Factorials grow very quickly, so it is important to handle large numbers appropriately. Rust's standard library provides the u128
type, which can handle very large integers. Your task is to implement a function that calculates the factorial of a given u32
number and returns the result as a u128
.
Implement a function factorial(n: u32) -> u128
that calculates the factorial of the given non-negative integer n
. Use early returns to handle the base case when n
is 0, since 0!
is defined as 1. For other values of n
, use a loop to calculate the factorial.
n
of type u32
and return a u128
.n
is 0
.n
, use a loop to calculate the factorial.let result = factorial(5);
assert_eq!(result, 120);
let result = factorial(10);
assert_eq!(result, 3628800);
let result = factorial(0);
assert_eq!(result, 1);
u128
type which can hold very large numbers. This will be useful for calculating large factorials.return
statement to handle the base case of 0
!.for
loop or while
loop can be used to multiply the numbers from 1
to n
.n
.pub fn factorial(n: u32) -> u128 { if n == 0 { return 1; } let mut f: u128 = 1; for i in 1..=n { f *= i as u128; } return f}
pub fn factorial(n: u32) -> u128 { let mut result = 1; if n <= 0 { return 1 }else{ result = n as u128; for i in 1..n{ result *= (n-i) as u128; } return result }}
pub fn factorial(n: u32) -> u128 { // Implement your code here if n == 0 { return 1; } (1..=n).fold(1_u128, |fac, n| fac * n as u128)}
pub fn factorial(n: u32) -> u128 { if n == 0 { return 1; } let mut f: u128 = 1; for i in 1..=n { f *= i as u128; } f}
const FACTORIALS: [u128; 35] = [ 1, // 0! 1, // 1! 2, // 2! 6, // 3! 24, // 4! 120, // 5! 720, // 6! 5040, // 7! 40320, // 8! 362880, // 9! 3628800, // 10! 39916800, // 11! 479001600, // 12! 6227020800, // 13! 87178291200, // 14! 1307674368000, // 15! 20922789888000, // 16! 355687428096000, // 17! 6402373705728000, // 18! 121645100408832000, // 19! 2432902008176640000, // 20! 51090942171709440000, // 21! 1124000727777607680000, // 22! 25852016738884976640000, // 23! 620448401733239439360000, // 24! 15511210043330985984000000, // 25! 403291461126605635584000000, // 26! 10888869450418352160768000000, // 27! 304888344611713860501504000000, // 28! 8841761993739701954543616000000, // 29! 265252859812191058636308480000000, // 30! 8222838654177922817725562880000000, // 31! 263130836933693530167218012160000000, // 32! 8683317618811886495518194401280000000, // 33! 295232799039604140847618609643520000000, // 34!];pub fn factorial(n: u32) -> u128 { FACTORIALS[n as usize]}
pub fn factorial(n: u32) -> u128 { let n = n as u128; let mut product = 1u128; for factor in (1..=n).rev() { product *= factor; } product}
pub fn factorial(n: u32) -> u128 { if n == 0 { return 1; } let mut fact: u128 = 1; for i in 1..=n { fact *= i as u128; } return fact;}
pub fn factorial(n: u32) -> u128 { // Implement your code here let mut fact: u128 = 1; for i in 1..=n { fact *= i as u128; } fact}
pub fn factorial(n: u32) -> u128 { // Implement your code here let mut out: u128 = 1; for i in (2..n+1).into_iter() { out *= i as u128; } out}
pub fn factorial(n: u32) -> u128 { // Implement your code here if n == 0 { return 1; } let mut result: u128 = 1; for num in 2..n+1 { result *= num as u128 } result}
pub fn factorial(n: u32) -> u128 { // Implement your code here (1..=n).map(|x| u128::from(x)).product()}
pub fn factorial(n: u32) -> u128 { let mut result = n as u128; if n == 0 {return 1} let mut n = n as u128; n = n - 1; while n > 0 {result = result * n; n-=1;} result}
pub fn factorial(n: u32) -> u128 { // Implement your code here if n == 1 || n == 0 { return 1; } return (n as u128) * factorial(n - 1);}
pub fn factorial(n: u32) -> u128 { // Implement your code here (1..=n).fold(1u128, |acc, i| acc * i as u128)}
pub fn factorial(n: u32) -> u128 { let mut r = 1u128; for i in 2..=n as u128{ r *= i; } r}
pub fn factorial(n: u32) -> u128 { // Implement your code here if n <= 1 { return 1 as u128; } else { return factorial(n - 1) * n as u128; }}
pub fn factorial(n: u32) -> u128 { // Note, factorials are often applied in reverse direction (5*4*..1), but it doesn't really matter algebraically. So this implementation counts up. match n { 0 => 1, _ => (1..=n).map(|x| x as u128).product() }}
pub fn factorial(n: u32) -> u128 { // Implement your code here if n == 0 { return 1; } // Note, factorials are often applied in reverse direction (5*4*..1), but it doesn't really matter algebraically. So this implementation counts up. (2..=n).map(|x| x as u128).product()}
pub fn factorial(n: u32) -> u128 { // Implement your code here if n <= 1 { return 1; } return factorial(n-1) * n as u128;}
pub fn factorial(n: u32) -> u128 { if n <= 1 { return 1; } return factorial(n-1) * n as u128; // Implement your code here}
pub fn factorial(n: u32) -> u128 { // Implement your code here match n { 0 => 1, 1 => 1, _ => (2..=n).map(|x| x as u128).product(), }}
use std::u128;pub fn factorial(n: u32) -> u128 { // Implement your code here if n == 0 { return 1;} let mut fac: u128 = 1; for i in 1..n+1 { fac *= i as u128 ; } fac}
use std::u128;pub fn factorial(n: u32) -> u128 { // Implement your code here if n == 0 { return 1; } let mut returnnum: u128 = 1; for i in 1..n+1 { returnnum *= i as u128; } returnnum}
pub fn factorial(n: u32) -> u128 { // Implement your code here if n == 0 { return 1 as u128; } let mut result: u128 = 1; let mut index: u128 = 1; while index <= n as u128 { result *= index; index += 1; } result}
pub fn factorial(n: u32) -> u128 { if n == 0 { 1 } else { let mut factorial: u128 = n.into(); for i in (1..n).rev() { factorial *= i as u128; } factorial } }
pub fn factorial(n: u32) -> u128 { (1..=n as u128).into_iter().product()}
pub fn factorial(n: u32) -> u128 { (1..=n as u128).into_iter().product()}
pub fn factorial(n: u32) -> u128 { // Implement your code here let mut sum: u128 =1; for i in 2..=n{ sum *= i as u128; } sum}
pub fn factorial(n: u32) -> u128 { // Implement your code here let mut sum: u128 =1; for i in 2..=n{ sum *= i as u128; } sum}
//Working with while loop/* pub fn factorial(n: u32) -> u128 { // Implement your code here let mut i = n as u128; let mut temp: u128 = 1; while i > 0 { temp *= i; i -= 1; } temp} *///Working with for loop/* pub fn factorial(n: u32) -> u128 { // Implement your code here //let mut i = n as u128; let mut fact: u128 = 1; for i in 2..= n as u128 { fact *= i; } fact} *///Working as recursive functionpub fn factorial(n: u32) -> u128 { // Implement your code here if n == 0 { 1 } else { n as u128 * factorial2 (n as u128 - 1) }}pub fn factorial2(n: u128) -> u128 { if n == 0 { 1 } else { n * factorial2(n - 1) }}
pub fn factorial(n: u32) -> u128 { // Implement your code here let mut i = n as u128; let mut temp: u128 = 1; while i > 0 { temp *= i; i -= 1; } temp}
pub fn factorial(n: u32) -> u128 { let mut f = 1; for i in 1..=(n as u128) { f *= i; }; f}
pub fn factorial(n: u32) -> u128 { if n == 0 { return 1 } let mut r: u128 = 1; for i in 1..=n { r = r * i as u128; } r}
pub fn factorial(n: u32) -> u128 { // Implement your code here match n{ 0 => 1, _ => factorial(n - 1) * n as u128, }}
pub fn factorial(n: u32) -> u128 { // Implement your code here let mut result: u128 = 1; if n == 0 { return result; } for i in 1..=n { result *= i as u128; } result}
pub fn factorial(n: u32) -> u128 { // Implement your code here if n == 0 { return 1; } let mut res: u128 = 1; for i in 1..=n { res *= i as u128; } res}
pub fn factorial(n: u32) -> u128 { // Implement your code here match n { 0 => 1, n => factorial(n-1) * n as u128 }}
pub fn factorial(n: u32) -> u128 { // Implement your code here if n == 0 { return 1 as u128; } let mut res: u128 = 1; for i in 1..=n { res *= i as u128; } return res;}
pub fn factorial(n: u32) -> u128 { // Implement your code here if n < 1 { return 1 as u128; } let mut result: u128 = 1; for number in 1..=n { result = result * number as u128; } return result;}
pub fn factorial(n: u32) -> u128 { if n == 0 { return 1; } let mut result: u128 = 1; for i in 1..=n { result *= i as u128; } result}
pub fn factorial(n: u32) -> u128 { if n == 0 { return 1; } let mut result = 1; for i in 1..=n { result *= i as u128; } result}
pub fn factorial(n: u32) -> u128 { // Implement your code here (1..=n as u128).product()}
pub fn factorial(n: u32) -> u128 { // Implement your code here let mut res: u128 = 1; for num in 1..=n { res *= num as u128; } res}
pub fn factorial(n: u32) -> u128 { match n { 0 | 1 => 1, _ => n as u128 * factorial(n - 1), }}
pub fn factorial(n: u32) -> u128 { // Implement your code here match n { 0 => 1, 1 => 1, _ => { let mut result: u128 = 1; for i in 2..=n { result *= i as u128; } result } }}
pub fn factorial(n: u32) -> u128 { // Implement your code here match n { 0 => 1, 1 => 1, _ => { let mut result: u128 = 1; for i in 2..=n { result *= i as u128; } result } }}
pub fn factorial(n: u32) -> u128 { if n == 0 { return 1 as u128 } (1..=n as u128).fold(1, |acc, x| acc * x)}
pub fn factorial(n: u32) -> u128 { // Implement your code here if n == 0 { return 1 as u128; } //(1..=n).fold(1, | acumulate, number | acumulate * number as u128) let mut response: u128 = 1; for i in 1..=n { response *= i as u128; } response}
pub fn factorial(n: u32) -> u128 { // Implement your code here if n == 0{return 1;} (1..=n).fold(1,|acumulate, number| acumulate * number as u128)}
pub fn factorial(n: u32) -> u128 { // Implement your code here if n == 0{return 1;} (1..=n).fold(1,|acumulate, number| acumulate * number as u128)}