Prime numbers are natural numbers greater than 1 that have no positive divisors other than 1 and themselves. Determining whether a number is prime is a fundamental problem in number theory and has applications in various fields, including cryptography and computer science.
In this challenge, you will implement a function to check if a given number is prime. You will use logical operators and conditional statements to handle the multiple conditions required to identify a prime number efficiently.
Your task is to complete the function is_prime(n: u32) -> bool
that takes an unsigned integer n
and returns a boolean value indicating whether n
is a prime number.
true
if n
is a prime number and false
otherwise.let result = is_prime(5);
assert_eq!(result, true);
let result = is_prime(4);
assert_eq!(result, false);
pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 1 { return false } let low = std::cmp::max( f64::sqrt(n as f64) as u32, 2); for i in low..n { if n % i == 0 { return false } } true}
pub fn is_prime(n: u32) -> bool { if n== 1 { return false; } let low = std::cmp::max( f64::sqrt(n as f64 ) as u32, 2) ; for i in low..n { if n % i == 0 { return false; } } return true}
pub fn is_prime(n: u32) -> bool { match n { 0 | 1 => false, 2 | 3 => true, _ => { let mid = (n as f32).sqrt().ceil() as u32; for i in 2..=mid { if n % i == 0 { return false; } } return true; } }}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false } for x in 2..n { if n % x == 0 { return false } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0 | 1 => false, 2 => true, _ => { let mut found = false; for i in 2..n { if n%i ==0 { found = true; break; } } !found } }}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 2 { return true } else if n<2 || n%2==0 { return false } else { for i in 3..n { if n%i == 0 { return false } } true }}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n <=1 { return false; } if n==2 { return true; } let mut x =0; for i in 2..=n{ if n%i ==0 && x<2 { x+=1; } } if x <2 { return true } false}
pub fn is_prime(n: u32) -> bool { match n { 0 | 1 => false, 2 | 3 => true, _ if n % 2 == 0 => false, _ => !(2..n).any(|i| n % i == 0), }}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } for divisor in 2..=((n as f64).sqrt() as u32) { if n % divisor == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { match n { 0..=1 => return false, 2 => return true, _ if n % 2 == 0 => return false, _ => { (3..=(n as f64).sqrt() as u32) .step_by(2) .all(|i| n % i != 0) } }}
pub fn is_prime(n: u32) -> bool { if n < 2 { false } else if n == 2 { true } else { let count = (2..=n) .map(|i| n % 2 != 0 && n % i == 0) .filter(|b| *b) .count(); if count == 1 { true } else { false } }}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 2 { return true; } else if n< 2 || n%2 == 0 { return false; } let mut i = 3 ; while i <= n / i { if n % i == 0 { return false; } i += 2; } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n<2 { false } else if n == 2 { true } else if n%2 == 1{ for i in (3..=((n as f64).sqrt() as u32)).step_by(2){ if n%i == 0 { return false; } } true } else { false }}
pub fn is_prime(n: u32) -> bool { if n == 2 { return true; } else if n < 2 || n % 2 == 0 { return false; } let mut i = 3; while i <= n / i { if n % i == 0 { return false; } i += 2; } true}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } let max = (n as f64).sqrt() as u32; for i in 2..=max { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n< 2 {return false;} for i in 2..n { if n%i==0{return false;} } return true}
pub fn is_prime(n: u32) -> bool { match n { 1 => return false, 2 => return true, m if m % 2 == 0 => return false, m => { for i in (3..=(((m as f64).sqrt()).floor() as u32)).step_by(2) { if m % i == 0 { return false; } } } } return true;}
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false; } if n <= 3 { return true; } if (n % 2 == 0) || (n % 3 == 0) { return false; } // all primes > 3 are of the form 6k +- 1 let mut i = 5; while i * i <= n { if n % i == 0 || n % (i + 2) == 0 { return false; } i += 6; } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let limit = (n as f32).sqrt() as u32; for i in (3..=limit).step_by(2) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { if n == 2 { return true; } if n < 2 || n % 2 == 0 { return false; } let mut i = 3; let upper = (n as f64).sqrt() as u32; while i <= upper { if n % i == 0 { return false; } i += 2; } true}
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let sqrt_n = (n as f64).sqrt() as u32; for i in (3..=sqrt_n).step_by(2) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let sqrt_n = (n as f64).sqrt() as u32; for i in (3..=sqrt_n).step_by(2) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0..=1 => false, 2 => true, 3.. => { let mut primes: Vec<u32> = Vec::new(); primes.push(2); for i in (3..=n).step_by(2) { let mut not_a_prime = false; for j in primes.iter() { if i % j == 0 { not_a_prime = true; } } if !not_a_prime { primes.push(i); } } if n == *primes.last().unwrap() { true } else { false } } }}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { return false; } for i in 2..n { if n % i == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } let mut factors = 0; for i in 2..n-1 { if n%i == 0{ factors += 1; } } factors == 0}
pub fn is_prime(n: u32) -> bool { if n < 2 || n > 2 && n % 2 == 0 { false } else { let sr = (n as f32).sqrt() as u32; for d in 3..=sr { if n % d == 0 { return false; } } return true; }}
pub fn is_prime(n: u32) -> bool { if n == 0 || n == 1 { false } else if n == 2 { return true } else { (2..n).into_iter().all(|x| { println!("{} % {} = {}", n, x, n % x) ; n % x != 0 }) } }
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { number if number < 2 => false, 2 => true, number if number % 2 == 0 && number > 2 => false, _ => (2..n).all(|i| n % i != 0) // Returns true if all the elements in 2..n cannot be divided by i }}
pub fn is_prime(n: u32) -> bool { match n { 0 | 1 => false, 2 => true, _ => (2..=n/2).all(|i| n % i != 0) }}
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let sqrt_n = (n as f32).sqrt() as u32; for i in (3..=sqrt_n).step_by(2) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { println!("{n}"); // Implement your code here if n == 1 { return false;} if n <= 3 {return true;} let mut c = 2; for i in 2..=(n/2) as u32 { if n % i == 0 { c += 1; } } c == 2}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let upperLimit = (n as f32).sqrt() as u32; for i in 3..=upperLimit { if n % i == 0 { return false; } } true }
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n != 2 && n % 2 == 0 { return false; } let x: u32 = (n as f64).sqrt() as u32 + 1; for i in 3..x { if n % i == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n != 2 && n % 2 == 0 { return false; } let x: u32 = (n as f64).sqrt() as u32 + 1; for i in 3..x { if n % i == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n != 2 && n % 2 == 0 { return false; } let x: u32 = (n as f64).sqrt() as u32 + 1; for i in 3..x { if n % i == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } for i in 2..n { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } let middle = f64::sqrt(n as f64) as u32; for d in 2..=middle { if n % d == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } for i in 2..=f32::sqrt(n as f32) as u32 { if n % i == 0 { return false; } } true }
pub fn is_prime(n: u32) -> bool { if n <= 3 { if n <= 1 { return false; } return true; } let mut divisor = 2; while divisor * divisor <= n { if n % divisor == 0 { return false; } divisor += 1; } true}
pub fn is_prime(n: u32) -> bool { if n == 2 { return true; } if n < 2 || n % 2 == 0 { return false; } let max_bound: u32 = (n as f64).sqrt() as u32; for divisor in (3..=max_bound).step_by(2) { if n % divisor == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0 | 1 => false, 2 => true, _ if n % 2 == 0 => false, _ => { for i in (3u32..).step_by(2).take_while(|x| (x * x) <= n) { if n % i == 0 { return false } } true } }}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } for i in 3..n { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let start = 3; let end = (n as f32).sqrt() as u32; for num in start..end+1 { if n % num == 0 { return false; } } return true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false } for i in 2..=f64::from(n).sqrt() as u32 { if n % i == 0 { return false } } return true}
pub fn is_prime(n: u32) -> bool {if n < 2 {return false}let start = 2;let mut end = n / 2; for idx in start..=end { if n % idx == 0{return false} } true}
pub fn is_prime(n: u32) -> bool {if n == 2 {return true}if n < 2 {return false}let start = 2;let mut end = n / 2; for idx in start..=end { if n % idx == 0{return false} } true}
pub fn is_prime(n: u32) -> bool { if n == 2 { return true; } if n < 2 { return false; } if n % 2 == 0 { return false; } for d in 3..((n as f32).sqrt() as u32) + 1 { if n % d == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false } for i in 2..=((n as f64).sqrt() as u32) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let mut i = 2.; let limit: f32 = (n as f32).sqrt(); while i <= limit { if i % limit == 0. { return false; } i = i + 1.; } true}
pub fn is_prime(n: u32) -> bool { if n == 1 { return false; } if n == 2 { return true; } for i in 2..n{ if n % i == 0{ return false; } } true}