Prime numbers are natural numbers greater than 1 that have no positive divisors other than 1 and themselves. Determining whether a number is prime is a fundamental problem in number theory and has applications in various fields, including cryptography and computer science.
In this challenge, you will implement a function to check if a given number is prime. You will use logical operators and conditional statements to handle the multiple conditions required to identify a prime number efficiently.
Your task is to complete the function is_prime(n: u32) -> bool
that takes an unsigned integer n
and returns a boolean value indicating whether n
is a prime number.
true
if n
is a prime number and false
otherwise.let result = is_prime(5);
assert_eq!(result, true);
let result = is_prime(4);
assert_eq!(result, false);
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { number if number < 2 => false, 2 => true, number if number % 2 == 0 && number > 2 => false, _ => (2..n).all(|i| n % i != 0) // Returns true if all the elements in 2..n cannot be divided by i }}
pub fn is_prime(n: u32) -> bool { match n { 0 | 1 => false, 2 => true, _ => (2..=n/2).all(|i| n % i != 0) }}
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let sqrt_n = (n as f32).sqrt() as u32; for i in (3..=sqrt_n).step_by(2) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { println!("{n}"); // Implement your code here if n == 1 { return false;} if n <= 3 {return true;} let mut c = 2; for i in 2..=(n/2) as u32 { if n % i == 0 { c += 1; } } c == 2}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let upperLimit = (n as f32).sqrt() as u32; for i in 3..=upperLimit { if n % i == 0 { return false; } } true }
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n != 2 && n % 2 == 0 { return false; } let x: u32 = (n as f64).sqrt() as u32 + 1; for i in 3..x { if n % i == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n != 2 && n % 2 == 0 { return false; } let x: u32 = (n as f64).sqrt() as u32 + 1; for i in 3..x { if n % i == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n != 2 && n % 2 == 0 { return false; } let x: u32 = (n as f64).sqrt() as u32 + 1; for i in 3..x { if n % i == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } for i in 2..n { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } let middle = f64::sqrt(n as f64) as u32; for d in 2..=middle { if n % d == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } for i in 2..=f32::sqrt(n as f32) as u32 { if n % i == 0 { return false; } } true }
pub fn is_prime(n: u32) -> bool { if n <= 3 { if n <= 1 { return false; } return true; } let mut divisor = 2; while divisor * divisor <= n { if n % divisor == 0 { return false; } divisor += 1; } true}
pub fn is_prime(n: u32) -> bool { if n == 2 { return true; } if n < 2 || n % 2 == 0 { return false; } let max_bound: u32 = (n as f64).sqrt() as u32; for divisor in (3..=max_bound).step_by(2) { if n % divisor == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0 | 1 => false, 2 => true, _ if n % 2 == 0 => false, _ => { for i in (3u32..).step_by(2).take_while(|x| (x * x) <= n) { if n % i == 0 { return false } } true } }}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } for i in 3..n { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let start = 3; let end = (n as f32).sqrt() as u32; for num in start..end+1 { if n % num == 0 { return false; } } return true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false } for i in 2..=f64::from(n).sqrt() as u32 { if n % i == 0 { return false } } return true}
pub fn is_prime(n: u32) -> bool {if n < 2 {return false}let start = 2;let mut end = n / 2; for idx in start..=end { if n % idx == 0{return false} } true}
pub fn is_prime(n: u32) -> bool {if n == 2 {return true}if n < 2 {return false}let start = 2;let mut end = n / 2; for idx in start..=end { if n % idx == 0{return false} } true}
pub fn is_prime(n: u32) -> bool { if n == 2 { return true; } if n < 2 { return false; } if n % 2 == 0 { return false; } for d in 3..((n as f32).sqrt() as u32) + 1 { if n % d == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false } for i in 2..=((n as f64).sqrt() as u32) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let mut i = 2.; let limit: f32 = (n as f32).sqrt(); while i <= limit { if i % limit == 0. { return false; } i = i + 1.; } true}
pub fn is_prime(n: u32) -> bool { if n == 1 { return false; } if n == 2 { return true; } for i in 2..n{ if n % i == 0{ return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 2 { return true; } else if n < 2 || n > 2 && n % 2 == 0 { return false; } else { for m in 3..=(n as f32).sqrt() as u32 { if n % m == 0 { return false; } } return true; }}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n == 2 { return true; } for i in 2..n { if n % i == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } for i in 2..=(n as f64).sqrt() as u32 { if n % i == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } for i in 2..=(n as f64).sqrt() as u32 { if n % i == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { return false; } for i in 1..=((n as f64).sqrt() as u32) { if n % i == 0 && i != 1 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here // Early return for known prime, 2. if n == 2 { return true } // Early return for known non-primes. if n < 2 || (n%2 ==0) { return false } // Get the square root as u8. Add 1 due to integer rounding. let root_n = ((n as f64).sqrt()) as u32 + 1; // Check all the divisiors from 3, 5, 7, ... sqrt(n). There is no need to check 4, 6, 8, etc because we already did that above. for divisor in (3..root_n).step_by(2) { if n % divisor == 0 { return false } } return true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false } // Get the square root as u8. Add 1 due to integer rounding. let root_n = ((n as f64).sqrt()) as u32 + 1; for divisor in 2..root_n { if n % divisor == 0 { return false } } return true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { return false; } for i in 2..n { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n == 2 { return true; } for i in 2..(((n as f32).sqrt()) as u32 + 1) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here let mut index: u32 = 2; if n < 2 { return false; } while index * index <= n { if n % index == 0 { return false; } index += 1; } true}
pub fn is_prime(n: u32) -> bool { if n < 2 || n % 2 == 0 && n != 2 { return false; } else { for d in 2..(n as f32).sqrt() as u32 + 1 { if n % d == 0 { return false; } } } true }
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false; } // 将循环范围优化为 2..=sqrt(n),时间复杂度降为 O(√n) let sqrt_n = (n as f64).sqrt() as u32; for i in 2..=sqrt_n { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false; } for i in 2..n { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { match n { 1 => return false, 2 => return true, _ => {}, } for i in 2..n { if n % i == 0 { return false } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n ==1{ return false; } for i in 2..=(n/2){ if n%i==0{ return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n <2{ return false; } for i in 2..=(n/2){ if n%i==0{ return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n <2{ return false; } for i in 2..=(n/2){ if n%i==0{ return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n ==1{ return false; } for i in 2..=(n/2){ if n%i==0{ return false; } } true}
pub fn is_prime(n: u32) -> bool { match n { 0..=1 => false, 2 => true, _ => checkaroo(n), }}fn checkaroo(n: u32) -> bool { let max = (n as f64).sqrt() as u32; for c in 2..max + 1 { if n % c == 0 {return false} }; true}
pub fn is_prime(n: u32) -> bool { // Implement your code here match (n, n % 2) { (0..= 1, _) => false, (2, _) => true, (_, 0) => false, _ => { //let max = n.isqrt(); let max = (n as f64).sqrt() as u32; //n.isqrt(); for i in 2..= max { if n % i == 0 { return false } } true } }}
pub fn is_prime(n: u32) -> bool { if n <= 1 || (n > 2 && n % 2 == 0) { return false }; for p in (3..=(n / 2)).step_by(2) { if n % p == 0 { return false } } true}
pub fn is_prime(n: u32) -> bool { match n { 0 => false, 1 => false, x => { for i in 2..n { if n % i == 0 { return false } } true } }}
pub fn is_prime(n: u32) -> bool { // Implement your code here n > 1 && (2..=(n as f64).sqrt() as u32).all(|i| n % i != 0)}
pub fn is_prime(n: u32) -> bool { // Implement your code here n > 1 && (2..=(n as f64).sqrt() as u32).all(|i| n % i != 0)}
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { m if m < 2 => false, m if m == 2 => true, m if m % 2 == 0 => false, m => !(3..=((n as f64).sqrt() as u32)).step_by(2).any(|x| m % x == 0), }}
pub fn is_prime(n: u32) -> bool { match n{ m if m < 2 => false, m if m == 2 => true, m if m > 2 && m %2 ==0 => false, m => !(3..=((m as f64).sqrt() as u32)).step_by(2).any(|s| m%s==0) } }
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0 => false, 1 => false, 2 => true, x => { for i in 2..x { if x%i == 0 { return false; } } true } }}