Prime numbers are natural numbers greater than 1 that have no positive divisors other than 1 and themselves. Determining whether a number is prime is a fundamental problem in number theory and has applications in various fields, including cryptography and computer science.
In this challenge, you will implement a function to check if a given number is prime. You will use logical operators and conditional statements to handle the multiple conditions required to identify a prime number efficiently.
Your task is to complete the function is_prime(n: u32) -> bool that takes an unsigned integer n and returns a boolean value indicating whether n is a prime number.
true if n is a prime number and false otherwise.let result = is_prime(5);
assert_eq!(result, true);
let result = is_prime(4);
assert_eq!(result, false);pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } if n == 2 || n == 3 { return true; } if n % 2 == 0 { return false; } let mut i = 3; loop { if n % i == 0 { return false; } if i * i > n { return true; } i += 2; };}pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { return false } if n == 2 { return true } for i in 2..n { if n % i == 0 { return false } } true}pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n % 2 == 0 { return n == 2; } let mut d = 3; while d * d <= n { if n % d == 0 { return false; } d += 2; } true}pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0 | 1 => false, 2 => true, n if n % 2 == 0 => false, _ => { let sqrt_n = (n as f64).sqrt() as u32; !(2..=sqrt_n).any(|i| n % i == 0) } }}pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let mut i = 2; while i * i <= n { i += 1; } !(3..=i).any(|x| n % x == 0)}// Hints:// Any number less than 2 is not prime.// The number 2 is the only even prime number.// For any other even number greater than 2, return false.// Check divisibility starting from 3 up to the square root of the number.pub fn is_prime(n: u32) -> bool { let end = (n as f64).sqrt() as u32; if n == 1 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } for i in (3..=end).step_by(2) { if n % i == 0 { return false; } } true}pub fn is_prime(n: u32) -> bool { match n { 0 | 1 => false, 2 => true, n if n % 2 == 0 => false, _ => (3..=(n as f64).sqrt() as u32) .step_by(2) .all(|d| n % d != 0), }}pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let mut i = 3; while i * i <= n { if n % i == 0 { return false; } i += 2; // cukup cek bilangan ganjil saja } true}pub fn is_prime(n: u32) -> bool { if n < 2{ return false; } if n == 2 { return true; } let checking_border = (n as f64).sqrt() as u32; for i in 2..=checking_border { if n % i == 0 { return false; } } return true;}pub fn is_prime(n: u32) -> bool { if n < 2{ return false; } if n == 2 { return true; } let checking_border = (n as f64).sqrt() as u32; for i in 2..=checking_border { if n % i == 0 { return false; } } return true;}pub fn is_prime(n: u32) -> bool { if n <= 1 { false } else { let n_sqrt = (n as f32).sqrt().trunc() as u32; for i in 2..=n_sqrt { if n % i == 0 { return false; } } true }}pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } let border : u32 = (n as f64).sqrt().trunc() as u32; for i in 2..=border { if n % i == 0 { return false; } } return true;}pub fn is_prime(n: u32) -> bool { match n { n if n < 2 => false, n if n == 2 => true, n if n % 2 == 0 => false, n => { for i in 2..n { if n % i == 0 { return false; } } true } }}pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0{ return false; } let sqrt_floor = (n as f64).sqrt().floor() as u32; for i in 3..=sqrt_floor{ if (n % i == 0) && (n != i){ return false; } } return true;}pub fn is_prime(n: u32) -> bool { match n { n if n < 2 => false, n if n == 2 => true, n if n % 2 == 0 => false, n if can(n) => true, _ => false, }}pub fn can(n: u32) -> bool { let end = (n as f32).sqrt(); for i in 3..=end as i32 { if n % i as u32 == 0 { return false; } } true}pub fn is_prime(n: u32) -> bool { match n { n if n < 2 => false, n if n == 2 => true, n if n % 2 == 0 => false, n if can(n) => true, _ => false, }}pub fn can(n: u32) -> bool { let end = (n as f32).sqrt(); for i in 3..=end as i32 { if n % i as u32 == 0 { return false; } } true}pub fn is_prime(n: u32) -> bool { match n { n if n < 2 => false, n if n == 2 => true, n if n % 2 == 0 => false, n if can(n) => true, _ => false, }}pub fn can(n: u32) -> bool { let end = (n as f32).sqrt(); for i in 3..=end as i32 { if n % i as u32 == 0 { return false; } } true}pub fn is_prime(n: u32) -> bool { // Implement your code here if ( n == 2) || n == 3 || n == 5 || n == 7 { true } else if (n % 3 == 0) || (n % 2 == 0) || (n % 5 == 0) || (n % 7 == 0) || (n < 2) { false } else { true }}pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } let n_f32 = n as f32; let sqrt = n_f32.sqrt() as i32; for i in 2..=sqrt as u32 { if n % i == 0 && n != i { return false; } } true}pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { return false; } let mut i: u32 = 2; while i*i <= n { if n%i == 0 { return false; } i += 1; } return true;}pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { return false; } for i in 2..=((n as f64).sqrt() as u32) { if n % i == 0 { return false; } } true}pub fn is_prime(n: u32) -> bool { match n { 1 => false, n => !(2..n).any(|x| n % x == 0) }}pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 1 { return false; } else { for i in 2..n { if n % i == 0 { return false; } } } return true;}pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false } else if n == 2 { return true } else if n % 2 == 0 { return false } let s = (n as f32).sqrt().floor() as u32; for i in 3..=s { if n % i == 0 { return false } } true}pub fn is_prime(n: u32) -> bool { if n == 2 { return true; } if n == 1 || n % 2 == 0 { return false; } !(3..(n / 2)).step_by(2).any(|i| n % i == 0)}pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } for i in 2..=((n as f64).sqrt() as u32) { if n % i == 0 { return false; } } true}pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { false } else { for i in 2..n { if n % i == 0 { return false; } } true }}pub fn is_prime(n: u32) -> bool { if n == 1 { return false; } let n_f = (n as f32).sqrt() as u32; for i in 2..=n_f { if n % i == 0 { return false; } } return true;}pub fn is_prime(n: u32) -> bool { if n == 1 { return false; } let n_f = (n as f32).sqrt() as u32; for i in 2..=n_f { if n % i == 0 { return false; } } return true;}pub fn is_prime(n: u32) -> bool { // Implement your code here match n{ (0..=1) => false, 2 => true, n => { if n%2 ==0 { return false; } for m in (3..= (n as f32).sqrt() as u32).step_by(2) { if n%m ==0 { return false; } } true } }}pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let mut i = 3; while i * i <= n { if n % i == 0 { return false; } i += 2; } true}pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } for i in 2..n{ if n % i == 0{ return false; } } true}pub fn is_prime(n: u32) -> bool { match n{ 0|1 => false, _ => {for i in 2..=n/2{ if n % i == 0{ return false; } } return true;} }}pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } for i in 2..n { if n % i == 0 { return false; } } true}pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0 | 1 => false, 2 => true, n if n % 2 == 0 => false, _ => (3..=(n as f32).sqrt() as u32).all(|d| n % d != 0) }}pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0 | 1 => false, 2 => true, n if n % 2 == 0 => false, _ => (3..=(n as f32).sqrt() as u32).all(|d| n % d != 0) }}pub fn is_prime(n: u32) -> bool { // This function efficiently checks if a number is prime by first handling small cases and then checking // divisibility by numbers from 5 upwards, skipping even numbers to reduce unnecessary checks. match n { 0 => false, 1 => false, 2 => true, 3 => true, _ => { if n % 2 == 0 || n % 3 == 0 { return false; } let mut ii = 5; while ii * ii <= n { if n % ii == 0 || n % (ii + 2) == 0 { return false; } ii += 6; } true } }}pub fn is_prime(n: u32) -> bool { // Implement your code here if n<2{ return false; } if n == 2{ return true; } if n % 2==0{ return false; } let mut prime:bool = true; let mut index = 3; while prime && index<(n/2){ prime = n % index != 0; index +=1; } prime}pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n == 2 || n == 3 { return true; } if n % 2 == 0 || n % 3 == 0 { return false; } let mut i = 5; while i * i <= n { if n % i == 0 || n % (i + 2) == 0 { return false; } i += 6; } true}pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n == 2 || n == 3 { return true; } if n % 2 == 0 || n % 3 == 0 { return false; } let mut i = 5; while i * i <= n { if n % i == 0 || n % (i + 2) == 0 { return false; } i += 6; } true}pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { return false; } if n <= 3 { return true; } if n % 2 == 0 || n % 3 == 0 { return false; } let mut i = 5; while i * i <= n { if n % i == 0 || n % (i + 2) == 0 { return false; } i += 6; } true}pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 1 { return false } let low = std::cmp::max( f64::sqrt(n as f64) as u32, 2); for i in low..n { if n % i == 0 { return false } } true}pub fn is_prime(n: u32) -> bool { if n== 1 { return false; } let low = std::cmp::max( f64::sqrt(n as f64 ) as u32, 2) ; for i in low..n { if n % i == 0 { return false; } } return true}pub fn is_prime(n: u32) -> bool { match n { 0 | 1 => false, 2 | 3 => true, _ => { let mid = (n as f32).sqrt().ceil() as u32; for i in 2..=mid { if n % i == 0 { return false; } } return true; } }}pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false } for x in 2..n { if n % x == 0 { return false } } true}pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0 | 1 => false, 2 => true, _ => { let mut found = false; for i in 2..n { if n%i ==0 { found = true; break; } } !found } }}pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 2 { return true } else if n<2 || n%2==0 { return false } else { for i in 3..n { if n%i == 0 { return false } } true }}pub fn is_prime(n: u32) -> bool { // Implement your code here if n <=1 { return false; } if n==2 { return true; } let mut x =0; for i in 2..=n{ if n%i ==0 && x<2 { x+=1; } } if x <2 { return true } false}pub fn is_prime(n: u32) -> bool { match n { 0 | 1 => false, 2 | 3 => true, _ if n % 2 == 0 => false, _ => !(2..n).any(|i| n % i == 0), }}pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } for divisor in 2..=((n as f64).sqrt() as u32) { if n % divisor == 0 { return false; } } true}